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ABSTRACT

We study partial integro-differential equations of the type

t

(I) atu(*,t) + Au(',t) + f a(t - s)Bu(.,s)ds = f(-,t), 0 4 t < T ,

0

in some spatial domain n C Rn, A being a linear and B a quasilinear

elliptic operator of second order, both in divergence form, together with

initial and various boundary conditions. We give conditions on the structure

of A and B that lead to a priori estimates and show how to get the

existence of weak solutions (u(.,t) e W 'p()or u(.,t) e W2 ,2 (g) for
loc

a.e. t) from approximating solutions (that solve finite-dimensional versions

of (I) or versions with modified coefficients). The main tools are "energy"

testimates on 13 u(-,t)|2 + f G(V u), if Bu - -div (V G(Vx u)), for W
solutions, and estimates on t~e L2-product (Au,Bu ) 2 for Wloc-SOlutions.
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SIGNIFICANCE AND EXPLANATION

- This paper studies a class of integro-differential equations that arises

in some models for heat conduction in materials with memory or for the

deformation of visco-elastic membranes. Some classes of constitutive

* assumptions are given that ensure the existence of weak solutions for these

models; i.e., stress or heat flux are integrable fields over the reference

configuration. The models are hybrids between damped nonlinear wave equations

* and perturbed heat equations, and mathematical techniques for these different

problems are combined to establish existence results. .

The resjonsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



WEAK SOLUTION CLASSES FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

Hans Engler and 7tephan Luckhaus

1. Introduction

In this paper we want to consider the integru-differential equation
t

(I) u(xt) - Auxt) - f alt s)div xg(V xu(xs))d - fixt)
0

in 2 x (O,T)

together with an initial condition

(1.0) u(*,0) u
0  

in 0

and boundary conditions

• (1.1) u I uI on (a\r) x [0,T)

t

(1.2) -V * (V u(x,t) + f a(t - s)g(Vu(xe))ds) - B(u(x't))
0

on r x (0,T).

Here 9 C 30 is bounded with Lipschitz boundary on, r c an, v is the outward normal.

The function g : 1 + EPn is a gradient, subject to certain growth conditions, a is a

scaler kernel with some regularity properties and a(O) - 0u B is a monotone function.

The functions uOu are traces of some function u0 i x [O,T) R, f and u0  are in

certain regularity classes. The precise assumptions are stated in the sections below.

In Section 2 we prove the existence of distributional solutions, using a version of a

technique that has been used by J. Clements ((41) for the case a - 1 and constant

Dirichlet boundary conditions. In Section 3 we consider specifically the "isotropic* case

9(C) g0 (JEJ) Z and prove some results on inner regularity, showing that all terms
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appearing in (I) are in L (0 x [0,T]). For the case of constant Dirichlet data and a
10c

domain 0 with C
2
-boundary, it is shown in Section 4 that the regularity estimates hold up

to the boundary. Sections 3 and 4 use a device by V. Barbu ((2]) and M. Crandall/S.-O.

Londen/J. Nohel ([6]). No claims concerning the uniqueness of the solution are made in the

general cases for this question and some other remarks see Section 4.

Fquation (I) has a physical interpretation from the theory of heat conduution in

materials with memory. Consider a homogeneous rigid heat-conduicting material occupying

some regicn Q C R
3

. Let q denote the heat flux, u the absolute temperature and e

the internal energy. In various general models for heat conduction (cf. (5], [17], [19])

it has been proposed that q and e should depend both on the present value and the

history of the temperature and its gradient. The constitutive assumptions

(1.3) q(x,t) - -a0 V xU(X,t) - f a(s)g(Vx u(xt - s))ds
0

(1.4) e(x,t) - e 0 (x) + K * u(x,t)

(K > 0 and a 0 > 0 denoting heat capacity resp. conductivity, a a suitable relaxation

kernel) together with the law of energy balance

(1.5) ate(x,t) + divxq(x,t) - r(x,t)L C(r denoting heat sources or sinks) then give (I) after rescaling time and prescribing the

temperature history u up to t - 0. The boundary condition (1.1) corresponds to a fixed

"temperature outside of $1 and pe- ect heat conduction through the boundary; (1.2)

corresponds, e.g., to a radiation law or to local temperature control at the bondary (cf.

[9]). This physical model leads us to regard (I) as a perturbed heat equation.

Another physical interpretation of (I) comes from the theory of viscoelastic

materials: The one-dimensional version of (I) with a E I describes longitudinal motions

of a homogeneous bar composed of a Kelvin solid (cf. (21], (101), assumine the following

relation between strain E and Picla-Kirchhoff stress E:

(1.6) - G(E) + L(E)

L a linear tensor-valued function, * denctiing the time derivative of E. The two-

-2-• 14• 2
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dimensional equation (I) then arises In a model for the normal displacement u of a

membrane composed of such a material. The boundary condition (1.1) correspond. to a fixed

portion of the edge of the membrane, (1.2) can be interpreted as a friction-type boundary

condition, the friction coefficient depending on the displacement. It should be noted,

however, that one would have to take 2 to be the linear infinitesimal strain in order to

arrive at (1), which somewhat disagrees with taking G as a general non-linear function in

(1.6). Nevertheless this leads us to view (1) as a damped non-ý'neat wave equation.

It should be noted that the fundamental differences between these two physical

interpretations essentially appear in the asymptotic properties of the kernel a and the

forcing term f; cf. (181 for a discussion of these problems.

Various authors have discussed the one-dimensional vers.'on of the visco-elastic model

problem leading to (M) (hence a E 1) and shown existence, uniqueness, and asymptotic

properties of classical solutions ([(], (71, [12), (231). weak solutions of the more

general equation (1) (a arbitrary, n - 1) have been discussed in [201 and as

applications of abstract theorems in [2) and [61. The n-dimensional case for a 3 I and

homogeneous Dirichlet boundary data has been treated in [4) where distributional solutions

are shown to exist.

A few words on the notation that we are going to employ:

For x e ik, jxj denote the normi 1-1 is reserved to Banach space norms.

For f i in i Ri, Vf - V f is the matrix uf (weak) derivatives wherever it existsx

(gradient for I - I)i divxf a div f is the divergence operator applied to f, if

n - t. For 0CW1 , C r(FPX) is the usual Sobolev space (for X R or X M R or

Banach space); C 0 (0) is the space of c-functions f 1 0 + 3 such that supp(f)

(the closure taken in 0) is compact, also if 2 is not open; wkP(fl) is the closure of
0

(fl) with recpect to the k *P-norm. Dependence on the variables x e Be or t e R is

suppressed where no confusion will arise.

By a * b(t), a e LI(oTI3), b e LI(OTX), X a Banach space, we denote convolution

with respect to t:

-3-
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C t
a * b(t) f aft - o)b(u)ds

"0

The symbol C, when appearinq in proofs, denotes a constant whose value can change from

line to line but which depends only on given properties.

d

I

4--
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2. Weak Solution, of the Dirichlet Problem.

In this seetion we want to show the existence of solutions of (I) if r is the empty

setl i.e. the boundary condition (1.1) should hold on all of 30 e (0,T]. We shall use the

following assumptions &

(Al) The region A C i is open and bounded.

(42) The function g t RO +F P is given by g(') - V G(C), G(0) - 0, G " P R being a

C -function. There exists a constant L )C>, such that G(a) - G(m) + 2 (lei + 1)

is convex and positive, and there exists a C% 3 0 such that for all e E Ir

(2.1) 1g(c) • n C ' • (c(, ) + + G() + 1)

(A3) The kernel a is in W
2

'
1
([o,TI,R)r a(O) - 1.

(A4) The function u 0 i x [O0T) R satisfies

I (GO3vau0 (',2)) +÷ Iva,-01(,o,)l l01",3i) 9 0o..
0 2

u u 0 (*,0) e W2'2 (a)

and

f G(VxU (*,0)) < -A

(AS) The function f is in w
1

'll(0,T]t L
2
10M).

We are going to prove the following results

Theorem Z.lt Suppose (Al) through (AS) hold. Then the equation (1) together with initial

and b"mdary conditions (1.0), (1.1) has a distributional solution ul i.e. u satisfies
2

(2.2) (Vxu + a g(Vxu)) V - u 3 - f • *}dxdt - f u 0 (-,0) * -,0)dx
09 a

for all test functions e 6 C (I3 x [0,T),R)i and (u - u 0 )(.,t) 4 ,e2(0,R) for a.e. t.

-5.-
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(2.3) P t at vcu(..s)1 2da + sup I (jatu(o,t)1 2 + G(Vxu(ott))) 4 K < -
0 a (0,T)

K depending only on the data of the problem.

Proof. We shall use a Galerkin procedure and

1. find approximating solutions,

2. deduce a priori estimates for them,

3. show that some of their weak clusterpoints solve (1).

Step is Let (V ) be a sequence of finite-dJUmensional subspaces of WIs (0), Lj be
'1 a

001dense in W"(SOO VM C C'(i). We seek solutions • (0.,T) V, of the systems of

ordinary integro-differential equations

(2.4). 3 'u(-,t) - v + f (VxU'(.,t) + a g(Vxum + Vx-0)(*,t)) :* Vv

.1-f(f(*,t) -3tu (',t)) - V - fV u (-,t) * V v
t 0x x' - ! (f~~~"(.*,O -% 0..t, By standard 'tl• x

for all v e V. and 0 4 t 4 Tj • (*I0) - 0. By standard theorems on functional

differential equations (see (131), (.2.4) has a unique local solution u at [OT] 4 V, for

all uVu is of class C" with respect to t.

Steop 2 Let um -u + u0 . We show that there exists a censtant C*, depending only on

U0 , f, and the properties of a and g, such that for all a

(2.5) sup I (•(VXu)(.,t) + IatU(.,t)12) + j I VatU.,t-l2dt " .

[O,TI a 0o

" twhich shows also that solutions of (2.4) exist on (OTI.

To show (2.5), we shall transform (2.4) such that a 3 1, differentiate test with

3 u , integrate over (0,t), and show that the "goodO terms (that appear in (2.5))

dominate all the rest. Let r be the resolvent kernel of a i i.e. r t (10T] * R is

defined by

t
r(t) + I r(t -s);(s)da + (t) -0, 0 C t .T

0
4. -6-
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4.

Than r is as regular as a, and for y,s e L (oTIR)

"(2.6) a * y - a on [0,T) iff 1 * y -s + r a on [0,T]

"We apply (2.6) to (2.4), with

"ylt) I- f g(Vx u(lt)) * Vx v

differentiate the resulting identity, and note that it is possible to take t-dependent teot

functions v e L2(0,T;V_). We then choose v(T) - u (',), and integrate from 0 to

t. The result can be written in the form

(2.7) 11(t)+ l2 (t) + 13 (t) I 14 (t)

with the following notations

2 + t t
, 11(t) -I1Iat..t)I 2 *+r(o). If .1i'C(.e)12 ÷5 '1 f (1.).(; C dou+l-,fld

2a 0a 0a

If ft%(.t)l2 
-. I3/o I3 (u',)1 d,

t t

3 2(ti - ff IV3( I2ds • r(÷ ) . f IVs(..t)12 I * a a,•(..,s).(;, IFC )(.,)d
00 a 00

S, 1 fI t24 r(0) j IVxU"i(et)1 2 
-C"Sf~ /I/ Vxl(e.e)I 2 ds'

13:t) ff Irm(as.gCV (..)1 ds = j- o(,u .)-*clI. ¶.It 2
I3(t) . I~ ~ ~~ d + rxlu(,)gvu (',))d f IV G(m('.t)12 _ 2"( IV" us. )12 +'

1. I 4 (t) ff/ (3f'(*.) ÷ r "I f(*.s) - 30(*.) - r a 3
2

0 (..2))* iIf .,e)ds

00 a s 0 a

pt 2t rr 32
14(.) ff ( ff(-s +(r a (. s) a au0 Os)3aUmsd

0 a

t
f f j (-,a) r 3 ( ,))u(-,)d

00a*: tS+ f u VxJ~(*,s) *( gl (*.mllld9

t -t t

• I ~(s)'(f dh, ) o.)12, + . ff If x "'.(',9)I2d" + C'f I G'(V u (-,s))ds . C
0 a 0Oa 0

-7-
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with e e LI(0,TItR); using the properties of g, u., and f in the last estimate.

Inserting all these estimates into (2.7) and using Gronwall's lemma we get (2.5).

Step 3s We extract a subsequence of the (u')m~l* again labeled in the same way, such

that

(i) ua
m + u strongly in L

2
(0,TiL 2 

()) 1

(ii) Vx u Vxu weakly in L 2(0,TiL 2(1)

3(ii) u a + atu weakly in L
2
(0,TjW1

, 2
(1)) 1

a) 2 1 n(iv) g(V A) + C weakly in .2(O,TiL (2,10))
x

with a suitable function C. All these limits exist due to suitable imbedding theoremal

the choice (iv) is possible since the g(Vu ) are equi-integrable and hence weakly

sequentially precompact in LI([O,T] x 12,30) (of. [9] and Lemmas 5.3, 5.4).

Next we want to use thet actually

(v) a tU t u strongly in L (0,TiL (Q1))

Suppose this is trues what is needed to complete the proof of the theorem now is

(2.8) " g(V u) a.e. on 0 x 10,T]

To show this, we use a version of a eonotoaLcity argument which has first been employed by

" Clements ([41). Transform (2.4) again by means of (2.6)F differentiate the resulting

"identity once, and take a test function 3 v, v C wl12 (0,T',V Integrating the

resulting identity from 0 to a with respect to t and from 0 to T with respect

to s then gives

T T
* (2.9) - I (T - t) I (At,,"Ov>dt + f I at-" u v dt - T f t u (.,o) v(.,o)

• 0 a a

+ f (I , 1 (v)(t) + Ist,2 (v)(t) + Zm,3(v)(t))dt f 14 (v)(t)dt.,
0 0

using the abbreviations

.t.-



11,(V)Ct) - (T -t) f (r a 3 u")(*.t) *v(*,t)dt
It a

t

Im2 (v)Ct) - f f x a tu'C..u)V xvC(ui0de + (T -t) f (Cr(O) -L)V xum¶.,t) -~ ) m-O

+ V u a (,O))v vC'-t)x x

Iý.33 v)(t) ( T - t) f (g(V xu"'C',t)) + *V x u¶..t)) * V %(*,t)

14 (v)Ct) ( T -t) f(3 tfC*,t) + r *3 EC.,*')) * 't

As a .,we can replace I stk v)(o,t) by I k(v)( ,t) (1 4 k 4 3) and atu' by

at,~u Vatu'~ by V3tu, g(Vu*) by C, in obvious notation, using (1)-Civ). The resultin~g

idetit chý hld fo an v W ,2((OT], 1,C()) (by density). gore precisely, we

only ased v to be in W , (%0TI.L 2 ()),LC2 OsTs1,2 MU) and additionally

* sUP f GCV VC.,t)) <
(0,T) a

*as is shown in 1.maa 5.5. We now insert v(*,t) - e-a ( u(set) - uo(*.t)), a) 0 to be

chosen later. Writing u C',t) -4t e uC..t)#U O'C.,Ot) - *-a u 0 (,t), we find the identity

(2.10) f T (TtetfjatUOt 2t + fT (cCT-t)+1)eamt *f a tuC.,t).uC0t)dt

-0 a0a

T ~~~ U f ~V ju.,t)j2 + f *V.. C,)d+ f C ~+ CT-t)CrCO) -L + -2) f 9rxu(-t,- (,~
0

4. f (1 u()CNO + 1 (u 0)Ct) )dt f (14 u a)(t) + II( ')t) + 1 2Cu 0,2(t)
0 40 iugaC ~

T
-at

(U+ ' )((01 )Ctdt + f f 3tu(..t)-( 3 tU0 C.,t)eat tT) + CaCT-t) + 1We u 0 C,t))dt
0 a

T IV~uC,(_O)I2' f. 1  A-t~r~tijeG f Vxu(.,O)V uC-,t)dt
2 0 (T

-9-



e Next, we insert v(*.,t) - sa • (u"[.,t) - u0 (.,t)) in (2.9). After rearranging we

: • get

:' ~TT
f(2.11) T (T't)e, f I3tu¶lt)I2 f (GCT'tlel)e at f a u"(-,t)u((,t)dt +
0 0 0 0

+ aatI + (T-t)(r(O)-L -+2)) f IVuI,t)l 2 +, ;'V ux(.,t)V Um(.,t)]dt
0 '(2  2 a xx x

(g( A + L V ) Vum* -at,' 0 QQ
: ~+ f f (g(Vxum) + L • V u¶) * VxU • s'e T - tldt = ccm) ,

C(m) contains only terms which have corresponding expression* in (2.10) as limits. We

take a big enough such that the form

1 .Ta + -- t.. 
2_(2.12) v l f + (T-t)(r(0)-L + )}ov (t) + 1Cv(t).v(t)]dt for v e L 1,TjR)

0.

is positive definite. Now take the lim inf in (2.11) as a * . The first two integrals

on the left hand side converge due t*, (v)j the third integral is the positive definite form

that appears in (2.12) and is hence lower semL-continuous with respect to weak

convergence. Comparing the result with (2.10) we see that

lim inf J e't (T - t) f (g(Vu(e,t)) + L " V u(.,t)) • aJ u(t)dt 4
ano 0 x

T
. f e[at (T - t) f (C(.,t) + *L Vu(.,t)) o V u(*,t)dt

0 0

Then a standard argument using the menotonicity of p * g(p) + L * p implies that

g(Vx u) - C a.e. on Q x 10,T] (cf. 115]).

It remains to be shown that (v) holds. Let w U e ( (COTV-) We use aM W

version uf a compactness argument in (151 to show that (wm)mM is a Cauchy-sequence inI
"L (210,TL 2(2)), from which (v) follows.

"* -10-



First, let X= Vm, equipped with the W
1
'"-norm, X be the W1,'-closure oE

Xm, and X*,X- be the corresponding dual spaces. We claim:

m= 1 
,For any a > 0 there exist C(C) > 0 and K e N such that for all z e W 2(a)

(2.13) IzA L £ ( zl 1,2M + C(M) * |Z: "

K

For else we could find an c > 0 and a sequence (zK )K> in W 1 ,2(1)' ZK w¶,2 1 1, such

that

(2.14) 1ZKK 1 2 + K - 1z K I
L~fl)XK

Using the compactness of the imbedding W
1

'
2

(0) + L 2
(f() we extract a subsequence with L-

limit zlzl 2 > C. On the other hand, by (2.14) 1z K 1 0.L (0l)X

By density, this implies thit zK + 0 weak-* in XK which is a contradiction to

1(k)+: * 0 in L
2 
(0) for a suitable subsequence. From (2.13) we conclude that for

all C > 0 there exist C,K such that for all w e L
2
(0,T;W 1 2

(1))

2.1-) EwL 2 (0,T;L 2
((1)) < L2

(0,TiW1
, 2

(ML)) L (0T;XK)

We apply (2.15) to (w m)m1 and see that it suffices to show that this In a Cauchy-
seueceinan 2 2

sequence in any (0,T;X). In fact, since w -y Dtu weakly in L
2

(0,TjL2(0)) by

(iv), it will be enough to show that (w ) is precompact in any L2
(0,T;X•)$ the claim

then follows from standard diagonal sequence arguments. Now the differentiated version of

(2.4) shows that for fixed K

(13tWm *IK ( m)
K

is an equi-intograble set in LI (0,T;R). Hence for fixed K the w. are equi-continuous

in XK and by (2.14)

(W m(0),v) " f (-V xU0 V +v f * v)

-K 1K



whic shos tat ( O))Oý.,is uniformly bounded in X* reastermte mle

that (w 9>1  is precompact, even in C(,]X)frayK

This argument completes the proof of (v) and thus of the theorem.

Remarks

2.2. As in, e.g., ( 61, it is possible to weaken the assumptions on a to

a C ofI, (C0,TJ,R), I e DVUO0,TI,R), aCO) - I

and the proof of Theorem 2.1 even allows to include x-dependent a, e.g.

a e 2,1 (10,T],L(g)), &(*,I,) i I

2.3.* The condition (A2) basically requires g to be of Opolynomialw character such that

* (2.1) holds. However, g can be wanisotropic* in the sense that it can possess different

- growth properties along different directions in Re'. Also, 9 can be *degenerate-I e.g.,

gMC - (I + >C2 ~ C 0

is allowed, and g can be 'non-.onotone* (only COO g(C) + L a C has to be uonotone)r cf.

- (11 for an even weaker assuu~tion in the case of one space dimension. finally, the proof

* allows also to include in-dependent g's or an elliptic differential operator in divergence

* form instead of the Laplacian.

1.: -12-



3. Differentiable Solutions

in this section we want to give a somew'iat different existence argument for solutions

of (I). It is partly based on a method that was used in (2) and (6] to treat a Hilbert-

space version of (I) and will enable us to include the nonlinear boundary condition (1.2)

and to show that all terms in (I) actually exist as locally integrable functions. On the

other hand, we shall only treat the uisotropic" case g(p) - gO(Ipj) p P. Some variants of

"the assumptions made above will be used:

(EB) The region 2) C len is open and bounded. 30 is a Lipschitz manifold ,  r c 30 is a

submanifold of dimension n - 1, 2 is locally on one side of r.

S(2) The function g t In + Is is given by g(p) = g0 (IPl) p p, go (. [0,) + R being

locally Lipschitz-continuous on (O,4). There exist constants L 0 , C > 0,

l 50, such that for all r > 0

(3.1) g0 (r) + L1 ) 0

S(3.2) 4 • (go(r) + L1) 4 ! ((g 0 (r) + L 1 ) * r) 4 C C (0(r) + LI)

r

Similar to Section 2, we define G0 (r) - f g0 (s) a 5ds for r A 0, G(p) - G0 (lpl).
and G(p) - Gp) +0I L1 0 Ipl2.

(33) The function 5 R + IU is locally Lipschitz-continuous, and there exicts a

constant L2 ) 0 and for any )o 0 a C(C) .) 0 such that for all r e R

(3.3) -L 2 4 0'(r) 4 C * (O(r) + L2 2 r) + C(s)

Without loss of generality, L 1 - L2 - L > 0. Define

r
5(r)f - ''(s) + Lds•

0

(34) The function u0 satisfies

* ?2 (u 0 (*,0)) < sup latu0 <
r rx[O,T]

The main result of this section is

-13-



Theorem 3.1: Suppose that (91)-(84), (A3)-(AS) hold. Then the equation (I) together with

initial and boundary conditions (1.0)-(1.2) has a distributional solution ul i.e. u

satisfies

T t
ff (Vx u + a g(Vx u)), V x- U -t .f )dxdt +* I f w +dxdt

-f u01(-,0) * #l.,O)dx

for all test functions t eCI((D U r) x (O.T)it)t v w L ar x (O,T),1), such that

w - 9(u) &e.. on r x (OT]uju - uo)(ot) is for &... t in the W
1

'
2
-cloeure of

y((n u r),R).

Also,

(3.4) f (f1 atVXul
2 

+ f 13 t(u)l 2
)dt + sup f (lt u90,t)I G(Vxu)) <

0 a r [OT]G 2

and

(3.5) I C2 . IV (/g(IVxUI) + 1" V U)12dxdt * sup I C2 , IVhIu 2 < U,

[O,T] a

if C : R 3 is Lipschitz-continuous, 132 i O IT3CI t 4 I (e.g., if
L

C(x) - dizt(x,3a)).

Proof. We shall

(i) find solutions of approximating equations,

(ii) derive the estimates (3.4) and (3.5) and

(iii) pass to the limit.

For K > 0 we define

gO(r) - inf(gO(r),N., g"(p) - goo(ipl) p j

SMCr) - inflNsup(6(r),-N))

Clearly, 9M0 and 0M fulfill (82) and (33) with the same constants.

-14-



SteP I: We solve (I) with g replaced by ", o replaced by $e, and get solution uN

by means of a Galerkin-type argument similar to the one used in the pzevious section (cf.

(II] for an abstract existence theory for similar problems). The u" are unique, since

gm and SN ore globally Lipschitz-contLnuous. Define

r/N
S"(r) ('a) + L Ldo

0

-p gM(a) * ads
0 90

We show that (3.4) still holds with G,0,u replaced by 0N#SN.N, the bound not

depending on K. To this end we take backward difference quotients in (I), use the
Nr

backward difference quotient dh(u - UV) as a test function (which is admissible),

integrate over 1ht]), and let h tend to zero. The result is the following Identity:

I - • a ,V X. a u -T u)dxdt + f f Ug(VN) A + g(v UN)) • D* N - )d,•

(3.6) + f U"(.,t) " - u 0 )(.,t)dx * f f • N - &)ddt-
0 r

Jf f af " a (N uo)dxdt•
0 Q a a

The manipulations that lead to the estimates of atV uM and 3tun are the same as in the

corresponding part of the proof of Theorem 2.1. Only the two integrals that contain the

nonlinear terms gN(V u ) and BN(U) need some additional arguments:nonltnea

-15-
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ti
*1

Sfa a v,(-,.) •(g"(VxM). * g(V x U))(,.)d. -

oa

NM M M
f G (V xa(,) j 0Mf (;N(. 0 x + V'.t' g Vx~~ a MVu Ct

tt 'a

"-fa O 0 C~V 'a l''t ) * 'I (~VxM',O(I) ÷ NVUl,)": ~~U).t

h " e (v : u . •, ),r. -a ) v . ,(..) it gHv xu .( .)).ds0 02 0oa

where we have performed an integration by parts.

V use lama 5.6 to estimate this from below by

j " G (0#t)) f V I N(_,t..t C f (ft(VuJ .,
2 x 2 0a C..)

+. LIV÷ 2l• 0.,0)Id2) + 1)

t
0 a

t,2~ M LI M 24 C fj('. x,)U01.8)) + LOIV a u C60.s + G* xum(*), + CIV.,), )ds

00a

by the same lema.

Concerning the other nonlinear term, Vw have 3tU" e L2 Cr [0,T]) by Lz- 5.1 and

f t a,, (U . • a( - 0)(.,,)
" or r

t t ft

" I f/ Ja g(U"'as))j2  - L 1 f a I l,)l 2 - f "(uMI'a uf .S -u0(,))ds
o r o r o r u0 *ad

We use lommas 5.1 and 5.2 to estimate this from below byI

ii -16-
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ft ju "(.S)1( CN f* tvId f IV iv u N 2 ds C ) f N1uM(,) 2 d

o r 0Q a ~ ) d a u(* Id

-C *(JI t NN.) fd +1

o r

Collecting all torus we then get (3.4) after an application of Gronwall's Lemma.

Step 2: We want to use C2 2 Aun as a test function, e 6 W 'I(9). and hence have to

show that 2 • v2 uN as in L2 1(2 x (OT]) for such C. To this end we replace theX

kernel a by at(.) - 1 1(.) • a(9) and consider the elliptic problems

(3.7) -Au 'C.,t) - dvl lUN)t) -*(Nti (Vlt) N

for 0 4 t 4 T with corresponding boundary conditions. The problsas (3.7) can be solved

step by step, its solutions u '€ satisfy .'

(3.8) sun I C2 * IV 'u I (*,t) < K(MI for all C and N.
(0.!) 2

K(N) independent of 9, if we use the estimate (3.4) for 3 the global Lipschitz
tu

Kcondition for gN and m * and standard result. for linear elliptic equations ((141).

Passing to the lii•t as 6C+ 0 we recover the ux for which thus (3.8) still holds.

Hence (1) holds a.e. L.a x (0,T), and all the sumands appearing in (1) are in

L 29( x (0.T]) for ',ny compact subdomain 9 c• 0. Let again r denote the resolvent

kernel of as

t
r(t) + I 1(t - *)r(s)dx +*a(t) - 0 on 10,T)

0

Taking the convolution of (1) with r and adding it to (1) then gives

(3.9) 3 t lu (t) + r ( )(l.,t) - Au N(It) - r u Au (-,t) -

I * div (V u )(.t) - f(-.t) + r f(.,t) .

Let again dh denote the backward differerce quotient, and let e W"(01  ) (

"supp - c 0, IVCII C 1.
-L

: -17-



We apply d- to (3.91 in h 4 a 4 T, multiply with C2 ( -Ax U(.0)), and

integrate over a x (hwt), t 4 T. he h + 0, all Ulnits exist a.e., and we got the

* identity (for &... t)

t

(3.10) - f at'N( 'A t).U ,C 2 
- o *NV."u"1 2C2 + 2C X N-V ?t D ).U N

t 0

""+ ff r(10)%-"'(- ' + ftU (;*a -"'1-U ")'C2 +

0 0 0 a

N N N.1+ 2(.,t)l2 + t 1 2

O00

+ f f A u oUJ(9 K 4VX 1hI1A2 U +' _IA. (,)*AU(,)
0 9a

N N

Rearranging this and using the estimates for a um and V 3 un we get for a... t

f A•I mU2 2 + fJ U f di" Uvx(g "( ) x *-N V") U N 2
2 0 1o

ivwit~h cme C1 ) 0. C2 * Ll 1
0,T/iU independent• of N.L asl in (32) and big e~nough. We vent

•. ~to eati~mate the cecond integral on the left hand aider Fix N rand 0 C a C C anid write

+'_-g~(r) " g/•(r) ÷ L for chort. Then (suppressing a-dependenceo and writ•ing .1,for 5)XL

4t (3.12) J £xuN " div UN(I~x ) " q UN) " 11 -?

ii f a j 2II (iCxjU

-19-)
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Now for ae. x e 0

I 31  .uMal((;(IVU"l)at U) -

*Ke U *~)I + 0 090%vM,) 13 IaJaUNI +•b,.i.j lla)• lz+1- )I I dN)tJ[la'~ ~2

*N 2K).'(i N lll(g is IIVU'),) * 2 A I•"1gu(,)-q'(IV~ U).lvU - - - N I( I)l
4g(IVQNI) IVvi

9 ) 0 to be chosen later. Writing p - IVuNI and 4 - 1 l 3  uN i2 for short, we

estimate further

- • ... ) • • K 3 ju1. NI ) a u)I N (12 - K) • •I - * • ; J0L•I • ,
Lo- - 4g(p)

4 as in (3.2). Choosing i small enough we see from (3.2) that this eapreseLon Is

"bounded from below by
K 13( -7.N1 a I 2 91p1 .d

This term, multiplied with 2 and integrated over 0, hence given a lover bound for the

first integral on the right hand side of (3.12).

We estimate the second integral, using the sam notations

29 I ((~ca ja~ 1  
* g(p) *2 -3 iaju;CP) -. N

4- t,:) C( *

0 f 2 " 2
2 9(p) 0~ f ()0 g(p) 0 p

8 as in (3.2). But the secund integral can be estimated by f 3IvYuN) .d Iv NHI2

(Lemao 5.6), and this term is bounded by the estimate (3.4) uniformly in t andý N. Hence

fram (3.11) we get

-19-



I L

33 t t ¶2 C2 + 1 I 1 3  , 2  2: •.) •• ••4 1 1,,/o Vu" I) + L. 3• 2 C
0 a Lj

t

SC, + f C2 (a) f , ( 2.* C2 do
0 1

and Gronwal*@ IAMaO implies -7

(3.14) @up f IANt 2. 1'! I 13 L o( VTO)+ 4 L 3u")IZ C• C R.
S(0],T) 0 U Lej

K not depending on K.

SUStop 3s we exitract a subeequence of the (A (nft relabelled) such that

M() gN*u astrongly in L 2 (O0TeL 2 (9)) 1

strongly in L2(0,TIL2(I)), and a-- Con r K [O#i ,L

(11) 10+ 3 u weakly in L2(0,TiW1,2 12(1)) 1
t t

U(1i) Vua + V x u otrongly in each L2 (0,ToL 2 ()), a, CC

Al•n, the estimate (3.4) together with the properties of 0 and .g (cf. Limma S.4) shown

that O (uN) and 9 :(IV I) * Vu are *equi-integrable families and hence weakly
x 1 1

precompact in L (O,TL (r)) reap. in L (OoTiL (9)). Hence we can chooNe the subeequence

such that

(iv) •N(U ) 1 1 weakly in Lllo0T1 F)) !. (n

(v) go(IYVu )lVyu C weakly in L (0,oLt(M))

The continuity of and go together with (L) and (Iii) then show that

q-S(u) a.e on r x 10,T)

C - g0 (IVuI) - Vo a.*. on 0 x 0,T] ,

and moreover (3.14) still holda for the limit function u. Hence u. solves (1). and V2  J
an U

and a * divlgl(ITVu) * V U) are in 1 (0,rL () rep. in L (O,TiL. (0)). Theorem

3.1 is proved.

-20-
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Remarks.

3.2. Since no differentiability properties of u0  on aa\r are ever used, one can weaken

(.I) to the following hypothesis:

There exist (n - 1)-dimensional Lipsct its-manifolds rr 0o such that F C r C r0 c a,

and 0 is locally on one side of r 0

Since u 0  determines the behavior of dolutions only on 3\m. (3B4) then is only a

condition for u0 on (a0 \r) x 10,T) (by suitable extension arguments.). Also, no

additional problems arise if one replaces ,(u(x)) by B(u(A)) + h(xt), h a r x EDrT] * R

in a suitable Cobolev class.

3.3. It is possible to take 0 0 0 + 0 1 as a boundary nonlinearity, AO as in (03),

S being maximal monotone and sublinear, at the expense of assuming more regularity

properties for u.(0u e LI(0.TiL 2(r))). Also, if a(C) V 9 * ICl - C, C ) 0, p l neotuo
then 0 need only be continuous and 0'(r) • -L 2 1 since then the approximating solutions

will converge uniformly on r x (0,T].

3.4. It should be possible to extend the class of functions g 1 3P + N to OanisotropicO

onse (the Jacobians Dg having isotropic spectral radii, however), satisfying, e.g.:

There exist teller2 3 0 and ma,p i [M) + R such that for all Cp e Fin

(pel~pJ - ) I * Dg(p) • C 4 (M* (Ipi) + It11 • 2

1 '([p D) " I I 2 • C 0 (g(p) " p) - KI

is 1pD) f KI * e,(Ipl) + K2

1g(p) * pJ • l0 G(p) +12 X ([
2 

+ 1), where again V G(p) - g(p)

What kept us from including these assumptions were the technical problems that arise when

one tries to approximate g by suitable functions

iP -21-
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4. The Dirichlet Problem

In this section we want to show how to improve our results in the case of Dirichlet

boundary data ul ia const. by a modification of the method in Section 3. Tne principal

tool is the

""eima 4.1: Let CRn be bounded, 30 of class C2 . Let g s [0,-) *R be local.1.

Lipschitx continuous, and lot u e C2 (5,R), ulan S 0. Then

(4.1) A Au - div (g(0V u)V U) a a U 'l (g(IV um) u) +0 i,j 0

+ 1f 9(3,U) • u 2 , - 1) • H
30

*" where V is thQ outward normal on a0 and H the mean curvature with respect to V.

Proof: An integration by parts gives
f A.u * div1cg(IV x ulV u I•s j ±U • 3j (g(lV ul)aiu) +

+1 (Au.~ It ui 3 a * 
3 u -Vi) ;(IY,,ul30 a i,j

Since qV = u Vu I v on 30, the boundary term can be written as

'" u _% 2 . V2 • lul) . ).* .

Oonsider a point x e M. After a suitable translation and rotation we can assume

Sthat s l 0 and locally about 0 DO-

s. .U * I a C2 -function\, U some neighborhood of 0 e I-1n, and V#(0) - 0. Then in

theme local coordinates

A U(0) - an u(0) -A_#(0) n nU(0),
x" x

v(O)T • V2u(O)". V(0) - u(0)
n

But nnU(0) - S u(x) accor ing to our choice of coordinate system, and

S-A*(O) I (n - 1) * H(x), since V.$_0) -0. Hencex

-22-



This Leuma is a step towards a simple non-linear version of Sobolevskii-type estimates

for linear second-order elliptic operators as stated, e.g., in 13:. We thank Pror. A.

Friedman for pointing this out to us.

Obviously the identity of (4.1) still holds under the assumptions

u e W
2
'

2
( () 0 W01,2(11), g locally Lipschitz and bounded, r f 9'(r) * r bounded, by a

st.ndard approximation argument.

It is now possible to use (4.1) to modify the argumen•s of Section 3, if in (1.1) r

is empty and u , 0.

In step 2 of the proof of Theorem 3.1, the expression

f' Axu - &tv(c(IVxUMI)VxuM) • C2
2 X 9 XX

had to be estimated from below, C e W 1'(2) in order to take care of boundary terms. If
0

39 is C
2
-smooth and u lag 5 0, ve simply choose I 1 1 and get by Lamma 4.1 and

manipulations similar to those in step 2

f a UN div( V1 7 N U N" f. 1) j 14 Ul 2
"x x ai,j

- f ;(IV xVU¶I) . IV x 12 + f•; '(lvuI) I l3auNI 2  Hn - 1) • ,

K > 0 a small constant. By a standard trace theoren this can be estimated from below by

"f I I , i( u u") 1
2 - C f 9j va" 2

2 2i'j a

(see Le.ma 5.1), C > 0, and f c(IVuN1) • IVuN12 is a priori bounded by (3.4) and Leam

5.6. Hence in this special situation the solutions found in Theorem 3.1 fulfill

(4.2) fT IV (f0g (IV u) + Z V U) 2+ sup fe IV2uI (.t) <
0 a 0 x (0,T] x

However, one can also use Lemma 4.1 to show the existence of solutions of (1) for more

-23-
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general nonlinearities go, if the mean curvature of aa is non-neegative. A possible

class is described in the hypothesis

(BS) The function g s 3" " is given by g(C) - go(1(1) C,

go 1 [0,-) R 3 being locally Lipschitz-continuous on (0,-). There exists

a constant L ) 0 such that

(4.3) d ((gor) + L) * r) ) 0 on 10,)

For any C 0 there exists Cc ) 0 such that for all r ) 0

r

(4.4) Io(r) •rl • S 1f (g0 s) + L) ode + Cc
0

We then get the

Theorem 4.2t Let 1 C le be bounded, 30 C2-sfooth, with non-negative mean curvature

H (with respect to the outer normal). Let (35), (A3), (A4) and (AS) hold with

u0 V' 2 1() not depending on t. Then the equation (I) with boundary conditions

(4.5) utag0x(0TI 1 0

has a distributional qolution u satisfying (3.4) and

(4.6) sup f IVxu%2 (.,t) < "
(0,T] 0

Sketch of the proof,

* As in the proof of Theorem 3.1, we define for N ) 0

g90(r) - inf(g0 (r),N), gA(C) - 9("I(4) C •

Then g0 still satifies (35). We solve (1) with g replaced by gm and get unique

distributional solutions uN that satisfy (3.14). By an argument similar to the one used

above, um e t7(0,TWM2 ' 2 (A)) for all N. Still following the lines of the proof of

Theorem 3.1, we apply the resolvent kernel of a to the equation (M) to get (3.9),

N"differentiate formally (take difference quotients), and multiply with -A u which is an
x

• "admissible test function. This gives the identity (3.10) and - after rearranging terms -

-. (3.11) with i = 1. We then apply Lemma 4.1 and conclude that

f AuuMdiv((gl(gV.U M) + L) • V u 0

"-24-
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This Lemma is a step towards a simple non-linear version of Sobolevskil-type estinmates

for linear second-order elliptic operators as stated, e.g., in [3]. We thank Prof. A.

Friedman for pointing this out to us.

Obviously the identity of (4.1) still holds under the assumptions

u e W2' 2(f() 6 W1' 2(0), g locally Lipschitz and bounded, r w gt(r) - r bounded, by a

standard approximation argument.

It is now possible to use (4.1) to modify the arguments of Section 3, if in (1.1) r

is empty and uIx[OT] 0.

In step 2 of the proof of Theorem 3.1, the expression

f A UM div(;(Iv UM1 V ) .*2

$x xX x

had to be estimated from below, C e W 'm 1) in order to take care of boundary term! If

M0 is C2-smooth and uNIag M 0, we simply choose I 1 and get by Le-a 4.1 and

manipulations similar to those in step 2

f A •N* div(,(IVx U"I)VxuM) • I x I(/(uI)u auNI2
Ox Oi,j

SC. (IVxUMI) •IVx1u12 + I g(I'vuMIII) "*lu 2 (n 1) H

K > 0 a small constant. By a standard trace theorem this can be estimated from below by

f I 13 g( IVUKI) au M)1 2 _ C f ;(.IVuHI) 1 VuMI 2

2 i,j 0

(see Lemma 5.1), C > 0, and f ;(IVu "I) IVu I2 is a priori bounded by (3.4) and Lemma

5.6. Hence in this special situation the solutions found in Theorem 3.1 fulfill

T

(4.2) f I 30IV (g0Vx ul) + L V u)I + sup IVuI 2 (-,t) <
0 x [0,T]1

However, one can also use Lemma 4.1 to show the existence of solutions of (I) for more
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general nonlinearities g 0o if the mean curvature of 32 is non-negative. A possible

class is described in the hypothesis

(55) The function g s In -, IP is given by giM) - g(ICI) * C.

go 3 [0,-) R being locally Lipschitz-oontLnuous on (0,-). There exists

a constant L ) 0 much that

(4.3) ((g 0 (r) + L) 0 r) o 0 on (M,-)

For any C 0 there exists Cc 0 such that for all r 3 0

(4.4) Ig 0 (r) * rl 4 £ * J (gOWs) + L) ads + Cc

0

• .We then get the

Theorem 4.2s Let 0 C 3" be bounded, 30 C
2 -smooth, with non-negative mean curvature

R (with respect to the outer normal). Let (5), (W), (A4) and (AS) hold with

U, e W 0 (21) not depending on t. Then the equation (,) with boundary conditions

(4.5) Ul a 0

has a distributional solution u satisfying (3.4) and

(4.6) sup I IV'UI2 "(,t) 4 .<1
[0O,T 0[-

. Sketch of the proofs

As in the proof of Theorem 3.1, we define for N > 0

gl(r) - inf(g0 (r),N), gN(C) - gol(Ic) - C

Then g"0 still satifies (LS). We solve (1) with g replaced by g and get unique--

distributional solutions uN that satisfy (3.14). By an argument saimlar to the one sted

above, UN e L(0,TjW
2

'
2

1)) for all N. Still following the lines of the proof of

Theorem 3.1, we apply the resolvent kernel of ; to the equation (I) to get (3.0),

differentiate formally (take difference quotients), and multiply with -A uM which is an
x

admissible test function. This gives the identity (3.10) and - after rearranging terms -

(3.11) with 1 1 1. We then apply Lemma 4.1 and conclude that

f A u 11)+ • v ) +0 L

-24-
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"using (4.3) and H ; 0. Hence

(4.7) sup f Axu 2  X
(0,T .T

for all N, thus the u14 are uniformly bounded in LýA0,T;22M).

We now extract a subsequence of the (U") such that

(i) uK . u strongly in L2 (0,T;W1, 2 (0)), V VM  u ae. in A x [0,T]

(1i) go(IVxuNl) • VxO + C weakly in L (0,TlLI(0))

(ii1) .uK + 3 u weakly in L 2 (0,T#W1' 2 (2))
t t

The choice U) is possible, vince the bounds (3.4) and (4.7) bold uniformly in KI

properties of gN (cf. lema 5.4) and the estimate (3.14) show that the g."(I VuaI)Vu are

equi-integrable and hence weakly precompact in L -(0,TL 1(0)), hence (ii) i. possible.

The continuity of go then shows that

- = 0 (IVx ul) * V u a.e. on A x (0,T)

and (4.7) still holds for the limit function. This proves Theorem 4.2.

Remarks The condition of "non-negative mean curvature of the boundaryO that was used in

Theorie 4.2 reminds of the general curvature conditions that guarante, classical

solvability of quasilinear equations (cf. (221). The "stationary" solutions of (I) are of

this type, and it would be interesting to link these boundary conditions and properties of

the kernel a to show the convergence of solutions as t * -.

To conclude, we would like to comment on some related questions concerning the problem

(1) or its variants.

Existence of classical solutions:

By mans of contraction type arguments, one eusily shows the existence of classical

(C 2-) solutions for (X) and smooth data that exist locally in time, and these solutions

will be unique. Our a priori estimates only permit to continue them in the case of one

space dimension, however, since then 3 u will be H8lder-continuous (by the estimates of
x

Section 3 or 4), and one can apply the regularity theory for linear parabolic equations.

Note that in one space dimension the introduction of the cut-off function C (in Section

3) is not necessary.

-2S-



Uniqueness of solutiona:

SThis will follow if one c-- show that the spatial gradients of solutions are a priori

bounded on 0 x [0,T] (and thus the unique approximating rolutions u in Sections 3 and

4, cbtained by modifying g and 0 for large arguments, become 4-Indapendent for large

*M). However, our estimates only guarantee (in the setting of Section 4) that

Vxu e L (0,TIL (1))x

with p C - for n - 2 and 0 p for n > 2. The u3ual *bootatrapping" techniqu•s
n 2

(which would amount to regarding the integral term as a perturbation of a linear equation)

will not work due to the high order (of growth end differentiation) of the integral term.

The case of g(u,Vxu):

If the integral term a * divx g(V xu) is replaced by, e.g., a * dv x(g(u) - V xU).

then existence arguments become in fact simplerl since for approximating solutions um one

only has to guarantee the strong convergence of, e.g., um in some LP, but not of

V u Hence a priori estimaites of V u are sufficient to do thisl they can be obtainedx

(under suitable additional assumptions) by taking g(um ) as a test function in (I) and

using some definiteness properties of the form

"R
v f f a vlt) * v(t)dt for v e L2 (0,Tlen)

0

The more geniral case a divx(g(u,Vx u)) seema to be more difficult.

-26-
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SApvendix

Here ve state moe auxiliary arguments that have been used in the nrevious proofs.

Loew 5.1: Let 1 CRYn be bounded, DO of class C0 ,1r C D an (a - 1)-dimensLonal

submanifold, 0 locally on ons side of 39. Then for all 9 p 0 there exist* C(C) ) 0

such that for all u e W1'
2 (,)

(5.1) 2 6lul IV., l2 + C(C) luI 2

r a a

This is a simple consequence of vell-known trace theorems (cf. 1161).

Lema 5.2: Let 0 : R * a be locally Lipechits-continuous, let L ) 0 and

1 -L 4 (r) for all r 6 N.

and assume that for any C > 0 there exists some C(C) ; 0 such that for all r e R

64(r) C (5(r) * L, * rL [ C(C) .

r
Let (r) - 9 ,'5S) L a'ds.

Then for any 6 > 0 there exists some Z(6) ) 0 such that for all r a a

i6(r)J C l * 3r) W CMI).

Proofs Let r e 3. then.

r
1i(r) + L * r4 ISI0J + f ($'(a) * 1ldm

C 11(0)M * J 44s(m) + * /ij#s) L * -t ÷ Clc? do
a

4 1J(0011 B (r) * V¢1J(r) + LrI + C()"

J(l)J * € 21r) C -S 10(r) + LrI
4 1(0) Ca(rl 46 4

hence

li5Cr)I C W 82Cr1 * C1 1€1 * L • I) L

2
C 2C8 (r) (c).)
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/'

ima S.3s Let 0 1 1n It be differentiable, let L ) 0, let
ý(C) _-G(C) + h (ICl2 + ) eplteade =VGaC) ) 1) be positive, and lot V satisfy any of the following

2C
hypothesem.

(1) ftere exists C ) 0 such that for all C.n

IS(M) • 4Ii C + 01 + 1)

U(l) The function 9 is gven by g(C) - g(j(IC) - C. go is locally Lipschitz

continuou,. and there ex*Ktz a constant C ) 0 much that for all r ) 0

0- ( 9 0(r) + L ), 0 )

0 4 L ((q0(r) + L-) o r) C • (b,(r) +'L

Thn nfor all 1) 0 there exists C(d) 0 such that forall C aIF

moditidon (i1) Implies condition (I).

"Pr.o f Zn case (I), let B(d) - max Z()O. Then for any C

* Ig(C)l - ums I,(C) * nl (d.*m G-(C) ÷ * , 1. • (o( , ) . .

in case (ii). put i(r) 9 g0(r) + L. Then for n.C t 3' and r0 "ax(IuIICI)

Ig(C) 1 "I ; (ICI) ICI -• l l + L.- ICI • :1

C ;(ro) • ,r +L" ICI - 1l11

r0 r0

"" • (a(.) * a)' aft d I f (m) a ds - • I I l
0 0

•++ ro

* 0

0

and we are back in case (I).
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Lama 5.4t Let 9 be a finite measure space, M C L (0,10 a bounded net and

N L (0,3t"). For all u e N and 9 > 0 let there exist v e M and C€ 0 such that

for a.. x e a

I'(x)l 4 a Ivlx)t + cc

Then A is equi-integrable (and hence weakly sequentially compae. in L (AR )), i.e.

liz J lal " 0 uniformly in u e AM.
k- (Iul-lk}

Proof$

I Iu! I (lv + C) C • K+ Cc MI
S(lul)-k} {lul,) k

where

N @supf IlI, M1  sup f hal N + C1  f I
yalA ueN 0

Lesa 5.5,Lo (Le Cv be a sequence in L([0,T] x 0,10), such that (in the notation

of Section 2)

g(w
m
) w C weakly in LI (0,T] x 2,e)

and. \2

ego sup f (G(v) + L * 2) C K X

for all a.

Let v C LI([0,T] x 12,), eon sup (G(v) + LV 2 l)(0.0t) < Then
[0,T) £1

f glw) " v(°) * C ° v(*) weakly in L(l0,TIR)
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Proof• For N > 0, define v. inf(Nsup(-N,v)). Let t LO(0,TsL). then

(5.2) f *(t) f f (g(w) • v)(.,t)dt- I #(t) f qw,) 0 (,- VN)(.t)O t
.•0 0 0 9

T0

+ j *it) 9*f ') •WC (.Ol-t)dt
0 N

The first term can be estimated by

T"

(5.3) .1 ,, C. (G( ,) + G(R,1 - N.)) + 1)

L 00a

by (2.1), G(p) -G(p) ÷ p- 2 + 1, for any R 3 1, sinc* e (.1) also Implies

0(K 0 p) C* (C * (C))

oence the expression (5.3) is bounded by

•' I T
[C. -l n-)) + 1)

0 a

~~~~ic am -.( V . - A,") ° -' G •O)., as N ,- for any R., we. thus, der.ive. from
O0 0 2

(S.2) and the convergence of the second term in (5.2)

lim sup #(t) •f(c(Vm) •v- V at, l j eC

for any R and N, which shows the claim.
r

Lema 5.61 Let go & (0,-) # i be as in (32). G(0 r) - 0 g(ea) a 5ds, L, a in (32).*0

Than for all C > 0 there exists some C() ) 0 such that for all ras ) 0

IW g0 lr) # a l 4 a * (Go() + Lis
2 ) + C(c)(G00r) • L 1  r

2 1.

Proofs First note that rs# (g 0 (r) • L1 ) *r is monotone and (without loss of generality)

positive for r 0. Further for r2 > r 1  0

-30-
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(9 (r2  + L1  *r - ~ 2 9ot M I* O)+L

(q0 (l1 ) + L1 1 * r r r)

"r2  r2c+

4 exp(J d..±gim

So either 9 * r a sg then
• (gol) ÷ L) • • • 4 • (g l I) ÷rI r2

(9001 + LO) r 0 1( CS * (90 +

(go I(r) + LI) ( CO (go('O I.) 82

* On the other hand,

L

1  2 (90(s) + L11 ads 2

) (g+(r) ( 9,() r+J 0 r 2 0a

(90 r) + L r 2 C (G.o r) + r1 2

hence
L1

(WO) + )1  * r 2  (C + 2) * (G(O) +-Lr

Hence

2 2+0C(golf) * . 1 1 • r • .4 C C ÷ 2) * € • (Golf) +* r ) + • W(solj)÷5- 2 1 )•

Combining this with

2 482
Ir" *I AJ€ r2 46 for all *'

given the desired estimatle.l 8
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